
TRELPy: Toolbox for Task-Relevant Evaluation of Perception
Ranai Srivastav1, Apurva Badithela2, Tichakorn Wongpiromsarn1, Richard M. Murray2

Abstract—In safety-critical autonomous systems, deriving system-level
guarantees requires evaluation of individual subsystems in a manner consistent
with the system-level task. These safety guarantees require careful reasoning
about how to evaluate each subsystem, and the evaluations have to be consistent
with subsystem interactions and any assumptions made therein. A common
example is the interaction between perception and planning. TRELPy is a
Python-based toolbox that can evaluate the performance of perception models
and leverage these evaluations in computing system-level guarantees via
probabilistic model checking. The tool implements this framework for popular
detection metrics such as confusion matrices, and implements new metrics
such as proposition-labeled confusion matrices. The propositional formulae for
the labels of the confusion matrix are chosen such that the confusion matrices
are relevant to the downstream planner and system-level task. TRELPy can
also group objects by egocentric distance or by orientation relative to the ego
vehicle to further make the confusion matrix more task relevant. These metrics
are leveraged to compute the combined performance of the perception and
planner and calculate the satisfaction probability of system-level requirements.

I. INTRODUCTION

TRELPy(https://tinyurl.com/TRELPy) is a toolbox that provides
methods to compute metrics that evaluate the performance of learning-
based perception models (specifically the detection task of perception) and
use these metrics in computing system-level guarantees via probabilistic
model checking. The tool allows for defining new evaluation metrics that
are better suited for the task and abstraction levels corresponding to other
subsystems. Traditional metrics such as confusion matrices (CMs) with
object class labels are conservative in their evaluation of performance of
detection models because they assign equal importance to each detection
and misdetection. TRELPy overcomes this by defining the following
metrics that are task relevant i) CM with propositional formulae as labels ii)
Class-labeled CM, along with options to group evaluations by a) distance
from ego b) orientation with respect to ego.

For example, distance-based grouping of evaluations is relevant for
planning tasks where accurately detecting nearby objects is important.
Conversely, correct decision-making by a high-level planner might not need
accurate detections of every object. By leveraging the confusion matrix as a
probabilistic model of sensor error, we construct a Markov chain model of
system-state evolution to capture the impact of perception errors on planning.
Then, we use an off-the-shelf probabilistic model-checker, STORM [1], to
compute the system-level probability of satisfying the task with the given
perception model and a discrete-state planner. The planner can either be
synthesized correct-by-construction for the system-level task or user-defined.
The computed probability thus evaluates a system-level guarantee by
accounting for perception performance and its effect on planner outcomes.

II. DEMONSTRATION PLAN

We plan to present the pipeline presented in Figure 1.
Example: We define an environment with a car moving down a straight
road, approaching a crosswalk. The car safety specification states the car
must continue driving unless a pedestrian is on the crosswalk, in which
case, it must stop right before the crosswalk. The controller is synthesized

1 Department of Computer Science, Iowa State University, Ames, IA.
Acknowledging funding from grant NSF CNS-2141153 ({ranais, nok}@iastate.edu)

2 Controls and Dynamical Systems, California Institute of Technology, Pasadena,
CA. Acknowledging funding from AFOSR FA9550-22-1-0333 - ({apurva,
murray}@caltech.edu)

Fig. 1: Overview of TRELPy

to meet these requirements. The confusion matrices are generated using the
validation split of the NuScenes Dataset [2] using the pretrained PointPillars
[3] LIDAR model found in MMDetection3D [4].

During the demonstration, we plan to go over steps to setup the
repository to run inference and configure necessary thresholds and output
directories. The user can also configure distance thresholds for evaluation,
the propositional formulas, and the mapping from the detection model’s
outputs to these propositional formulas, and choose to use a synthesized
controller or a custom controller provided by the package. Finally, using
STORM [1] and TuLiP [5], TRELPy computes the task-relevant safety
guarantee via probabilistic model checking.

REFERENCES

[1] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A STORM is coming:
A modern probabilistic model checker,” in Computer Aided Verification
(R. Majumdar and V. Kunčak, eds.), (Cham), pp. 592–600, Springer
International Publishing, 2017.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal dataset for
autonomous driving,” in CVPR, 2020.

[3] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars:
Fast encoders for object detection from point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 12697–12705,
2019.

[4] M. Contributors, “MMDetection3D: OpenMMLab next-generation platform for
general 3D object detection.” https://github.com/open-mmlab/mmdetection3d,
2020.

[5] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLiP: a
software toolbox for receding horizon temporal logic planning,” in Proceedings
of the 14th International Conference on Hybrid Systems: Computation and
Control, HSCC ’11, p. 313–314, Association for Computing Machinery, 2011.

https://tinyurl.com/TRELPy
https://github.com/open-mmlab/mmdetection3d

	Introduction
	Demonstration Plan
	References

